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Interplay of disorder and nonlinearity 

Waves in nonlinear disordered media – localization or 
delocalization? 

Theoretical and/or numerical studies [Shepelyansky, PRL 

(1993) – Molina, Phys. Rev. B (1998) – Pikovsky & 

Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – 

Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & 

Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et 

al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – 

Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] 

Experiments: propagation of light in disordered 1d waveguide 
lattices [Lahini et al., PRL (2008)] 

Waves in disordered media – Anderson localization [Anderson, 

Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]  



The disordered Klein – Gordon (DKG) model 
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy E. 

The disordered discrete nonlinear Schrödinger 

(DDNLS) equation 
We also consider the system: 
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Conserved quantities: The energy and the norm                      of the wave packet. 
2
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Linear case (neglecting the term ul
4/4)  

Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem:  

           λAl = εlAl - (Al+1 + Al-1) with 
2

l lλ =Wω -W - 2,    ε =W(ε - 1)



Distribution characterization 

We consider normalized energy distributions 

and norm distributions 
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measures the number of stronger excited modes in zν.  

Single site P=1. Equipartition of energy P=N.  

for the DDNLS system. 

2

2

ll







ν

νz

for the DKG model,  



Different Dynamical Regimes 
Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, 

PRE (2010) - Laptyeva et al., EPL (2010) -  Bodyfelt et al., PRE (2011)]  

Δ: width of the frequency spectrum, d: average spacing of interacting modes,  

δ: nonlinear frequency shift.  
 

Weak Chaos Regime: δ<d,     m2  t1/3 

Frequency shift is less than the average spacing of interacting modes. NMs are 

weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & 

Shepelyansky, PRL (2008)]. 
 

Intermediate Strong Chaos Regime: d<δ<Δ,     m2  t1/2    m2  t1/3 

Almost all NMs in the packet are resonantly interacting. Wave packets initially 

spread faster and eventually enter the weak chaos regime. 
 

Selftrapping Regime: δ>Δ 
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are 

tuned out of resonances with the nonexcited ones, leading to selftrapping, while a 

small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)]. 



Single site excitations 

No strong chaos regime 

 

In weak chaos regime we 

averaged the measured 

exponent α (m2~tα) over 

20 realizations: 

 

α=0.33±0.05 (DKG) 

α=0.33±0.02 (DDLNS) 

 

 

Flach et al., PRL (2009)  

S. et al., PRE (2009) 

DDNLS W=4, β= 0.1, 1, 4.5 DKG W = 4, E = 0.05, 0.4, 1.5 

slope 1/3 slope 1/3 

slope 1/6 slope 1/6 



DKG: Different spreading regimes 



Crossover from strong to weak chaos 

(block excitations) 

W=4 

 

Average over 1000 realizations! 
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α=1/3 

α=1/2 

DDNLS β= 0.04, 0.72, 3.6 DKG E= 0.01, 0.2, 0.75 

Laptyeva et al., EPL (2010)  

Bodyfelt et al., PRE (2011) 



Symplectic integration 
We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. 

Num. Math. (2013) –  Senyange & S., EPJ ST (2018)] to the DKG model: 
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and the 3-part splitting integrator ABC6
[SS] [S. et al., Phys. Let. A (2014) –  

Gerlach et al., EPJ ST (2016) ] to the DDNLS system: 
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By using the so-called Tangent Map method we extend these symplectic 

integration schemes in order to integrate simultaneously the variational 

equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. 

(2011)  –  Gerlach et al., IJBC (2012)]. 



Maximum Lyapunov Exponent 
Roughly speaking, the Lyapunov exponents of a given orbit characterize the 

mean exponential rate of divergence of trajectories surrounding it.  
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Consider an orbit in the 2N-dimensional phase space with initial condition 

x(0) and an initial deviation vector from it v(0). Then the mean exponential 

rate of divergence is:  

σ1=0  Regular motion 

σ10  Chaotic motion 



DKG: LEs for single site excitations (E=0.4) 



DKG: Weak Chaos (E=0.4) 



DKG: Weak Chaos 

Individual runs 

Linear case 

E=0.4, W=4 

Average over 50 realizations 

 

Single site excitation E=0.4, 

W=4 

Block excitation (L=21 sites) 

E=0.21, W=4 

Block excitation (L=37 sites) 

E=0.37, W=3 

 

 

S. et al., PRL (2013) 
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slope -1 

slope -1 

αL = -0.25 



Weak Chaos: DKG and DDNLS 

DKG DDNLS 

Block excitation (L=37 sites) E=0.37, W=3 

Single site excitation E=0.4, W=4 

Block excitation (L=21 sites) E=0.21, W=4 

Block excitation (L=13 sites) E=0.26, W=5 

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)] 

Block excitation (L=21 sites) β=0.04, W=4 

Single site excitation β=1, W=4 

Single site excitation β=0.6, W=3 

Block excitation (L=21 sites) β=0.03, W=3 

αΛ = -0.25 αΛ = -0.25 



Strong Chaos: DKG and DDNLS 

DKG DDNLS 

Block excitation (L=83 sites) E=0.83, W=2 

Block excitation (L=37 sites) E=0.37, W=3 

Block excitation (L=83 sites) E=0.83, W=3 

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)] 

Block excitation (L=21 sites) β=0.62, W=3.5 

Block excitation (L=21 sites) β=0.5, W=3 

Block excitation (L=21 sites) β=0.72, W=3.5 

αΛ = -0.3 αΛ = -0.3 



Deviation Vector Distributions (DVDs) 

Deviation vector:   

v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t))  
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DVD: 



Weak Chaos: DKG and DDNLS 

Energy  DVD Norm DVD 

DKG: W=3, L=37, E=0.37 DDNLS: W=4, L=21, β=0.04 



Strong Chaos: DKG and DDNLS 

Energy  DVD Norm DVD 

DKG: W=3, L=83, E=8.3 DDNLS: W=3.5, L=21, β=0.72 



Characteristics of DVDs 

DKG DDNLS 

Weak chaos Strong chaos 

DKG DDNLS 



Characteristics of DVDs 
KG weak chaos  

L=37, E=0.37, W=3 

Range of the lattice 

visited by the DVD 
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Summary 
• Both the DKG and the DDNLS models show similar chaotic behaviors 

• The mLCE and the DVDs show different behaviors for the weak and the 

strong chaos regimes. 

• Lyapunov exponent computations show that:  

 Chaos not only exists, but also persists. 

 Slowing down of chaos does not cross over to regular dynamics. 

 Weak chaos: mLCE ~ t-0.25 

 Strong chaos: mLCE ~ t-0.3 

• The behavior of DVDs can provide information about the chaoticity of a 

dynamical system.  

 Chaotic hot spots  meander through the system, supporting a 

homogeneity of chaos inside the wave packet. 

 B. Senyange, B. Many Manda & Ch. S.: Phys. Rev. E, 98, 052229 (2018)  

‘Characteristics of chaos evolution in one-dimensional disordered 

nonlinear lattices’ 


