Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices

Haris Skokos

Department of Mathematics and Applied Mathematics, University of Cape Town Cape Town, South Africa

> E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Outline

- Disordered 1D lattices:
 - ✓ The quartic disordered Klein-Gordon (DKG) model
 - ✓ The disordered discrete nonlinear Schrödinger equation (DDNLS)
 - ✓ Different dynamical behaviors
- Chaotic behavior of the DKG and DDNLS models
 - ✓ Lyapunov exponents
 - ✓ Deviation Vector Distributions
- Summary

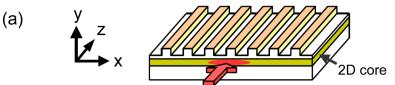
Interplay of disorder and nonlinearity

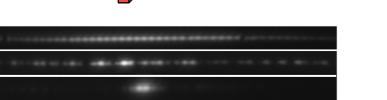
Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]

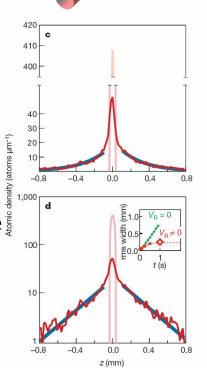
Waves in nonlinear disordered media – localization or delocalization?

(b) (c) (d)

Theoretical and/or numerical studies [Shepelyansky, PRL (1993) – Molina, Phys. Rev. B (1998) – Pikovsky & Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] Experiments: propagation of light in disordered 1d waveguide lattices [Lahini et al., PRL (2008)]







The disordered Klein – Gordon (DKG) model

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000.

Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left|\frac{1}{2}, \frac{3}{2}\right|$.

Linear case (neglecting the term $u_l^4/4$)

Ansatz: $u_l = A_l \exp(i\omega t)$. Normal modes (NMs) $A_{v,l}$ - Eigenvalue problem: $\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$ with $\lambda = W\omega^2 - W - 2$, $\varepsilon_l = W(\tilde{\varepsilon}_l - 1)$

<u>The disordered discrete nonlinear Schrödinger</u> (DDNLS) equation

We also consider the system:

$$\boldsymbol{H}_{D} = \sum_{l=1}^{N} \varepsilon_{l} |\boldsymbol{\psi}_{l}|^{2} + \frac{\boldsymbol{\beta}}{2} |\boldsymbol{\psi}_{l}|^{4} - (\boldsymbol{\psi}_{l+1} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+1}^{*} \boldsymbol{\psi}_{l})$$

where ε_l chosen uniformly from $\left[-\frac{w}{2}, \frac{w}{2}\right]$ and β is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$ of the wave packet.

Distribution characterization

We consider normalized energy distributions $z_v \equiv \frac{E_v}{\sum E_w}$ with $E_v = \frac{p_v^2}{2} + \frac{\tilde{\varepsilon}_v}{2}u_v^2 + \frac{1}{4}u_v^4 + \frac{1}{4W}(u_{v+1} - u_v)^2$ for the DKG model, and norm distributions $z_{\nu} \equiv \frac{|\psi_{\nu}|^2}{\sum_{i} |\psi_i|^2}$ for the DDNLS system. Second moment: $m_2 = \sum_{\nu=1}^{N} (\nu - \overline{\nu})^2 z_{\nu}$ with $\overline{\nu} = \sum_{\nu=1}^{N} \nu z_{\nu}$ **Participation number:** $P = \frac{I}{\sum_{n=1}^{N} z_{n}^{2}}$

measures the number of stronger excited modes in z_v . Single site P=1. Equipartition of energy P=N.

Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)] Δ : width of the frequency spectrum, d: average spacing of interacting modes, δ : nonlinear frequency shift.

Weak Chaos Regime: $\delta < d$, $m_2 \propto t^{1/3}$

Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & Shepelyansky, PRL (2008)].

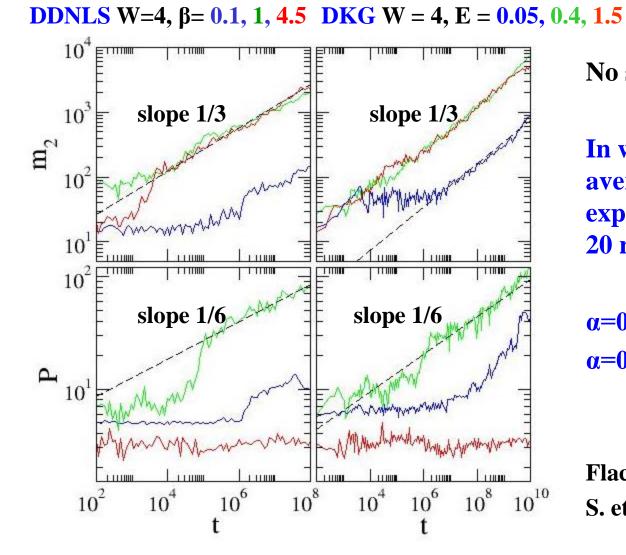
Intermediate Strong Chaos Regime: d< δ < Δ , m₂ \propto t^{1/2} \rightarrow m₂ \propto t^{1/3}

Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: δ>Δ

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].

Single site excitations



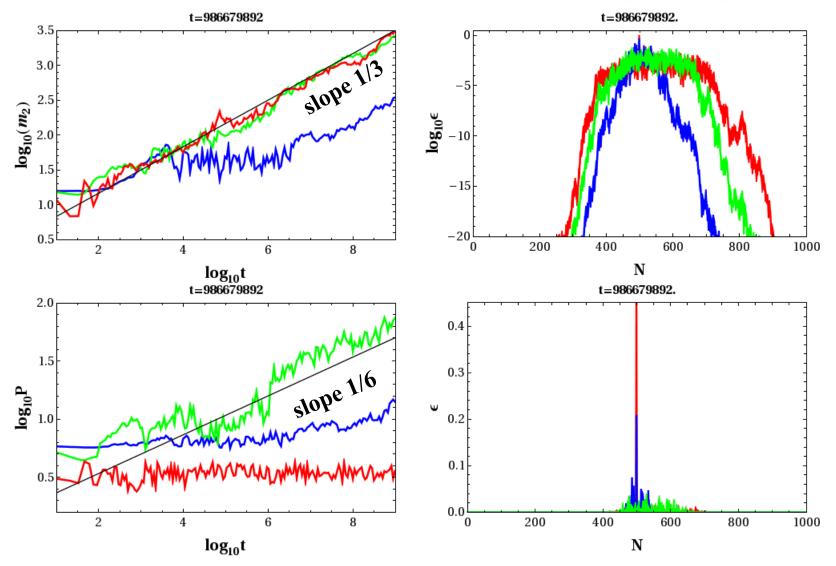
No strong chaos regime

In weak chaos regime we averaged the measured exponent α (m₂~t^{α}) over 20 realizations:

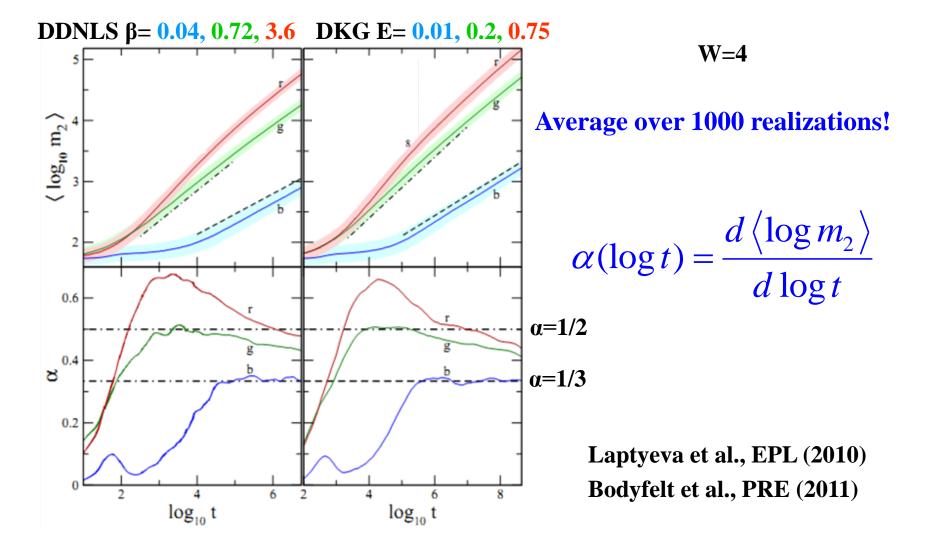
α=0.33±0.05 (DKG) α=0.33±0.02 (DDLNS)

Flach et al., PRL (2009) S. et al., PRE (2009)

DKG: Different spreading regimes



Crossover from strong to weak chaos (block excitations)



Symplectic integration

We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. Num. Math. (2013) – Senyange & S., EPJ ST (2018)] to the DKG model:

$$H_{K} = \sum_{l=1}^{N} \left(\frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2} \right)$$

and the 3-part splitting integrator ABC⁶_[SS] [S. et al., Phys. Let. A (2014) – Gerlach et al., EPJ ST (2016)] to the DDNLS system:

$$H_{D} = \sum_{l} \varepsilon_{l} |\psi_{l}|^{2} + \frac{\beta}{2} |\psi_{l}|^{4} - (\psi_{l+1}\psi_{l}^{*} + \psi_{l+1}^{*}\psi_{l}), \quad \psi_{l} = \frac{1}{\sqrt{2}} (q_{l} + ip_{l})$$
$$H_{D} = \sum_{l} \left(\frac{\varepsilon_{l}}{2} (q_{l}^{2} + p_{l}^{2}) + \frac{\beta}{8} (q_{l}^{2} + p_{l}^{2})^{2} - q_{n}q_{n+1} - p_{n}p_{n+1}\right)$$

By using the so-called Tangent Map method we extend these symplectic integration schemes in order to integrate simultaneously the variational equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].

Maximum Lyapunov Exponent

Roughly speaking, the Lyapunov exponents of a given orbit characterize the mean exponential rate of divergence of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) and an initial deviation vector from it v(0). Then the mean exponential rate of divergence is:

$$\mathbf{m} \mathbf{L} \mathbf{C} \mathbf{E} = \sigma_1 = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\left\| \vec{\mathbf{v}}(t) \right\|}{\left\| \vec{\mathbf{v}}(0) \right\|}$$

 $\sigma_1 = 0 \rightarrow \text{Regular motion}$ $\sigma_1 \neq 0 \rightarrow \text{Chaotic motion}$

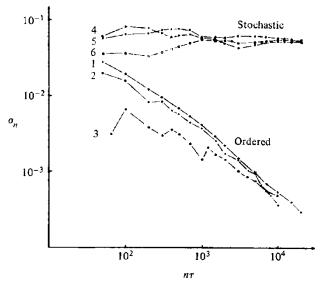
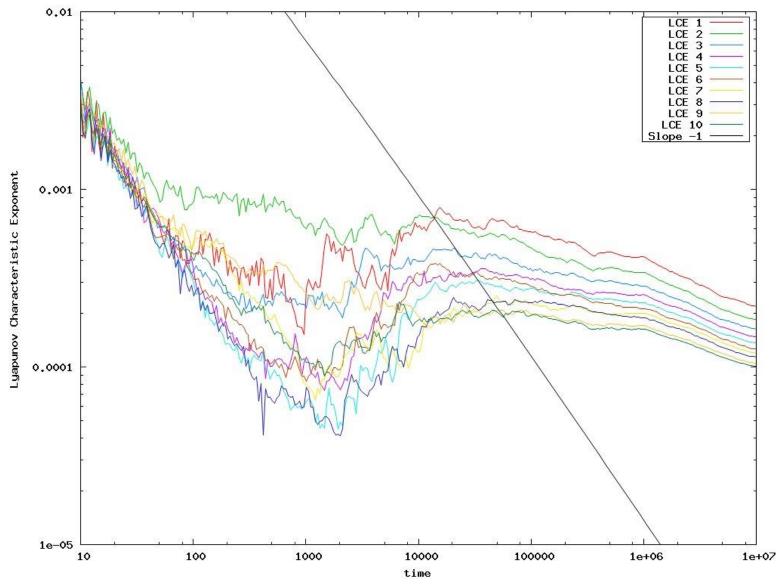


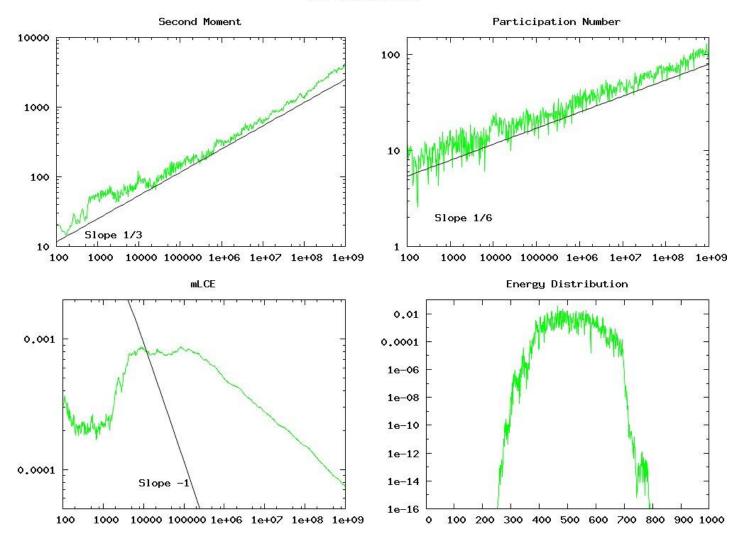
Figure 5.7. Behavior of σ_n at the intermediate energy E = 0.125 for initial points taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions (after Benettin *et al.*, 1976).

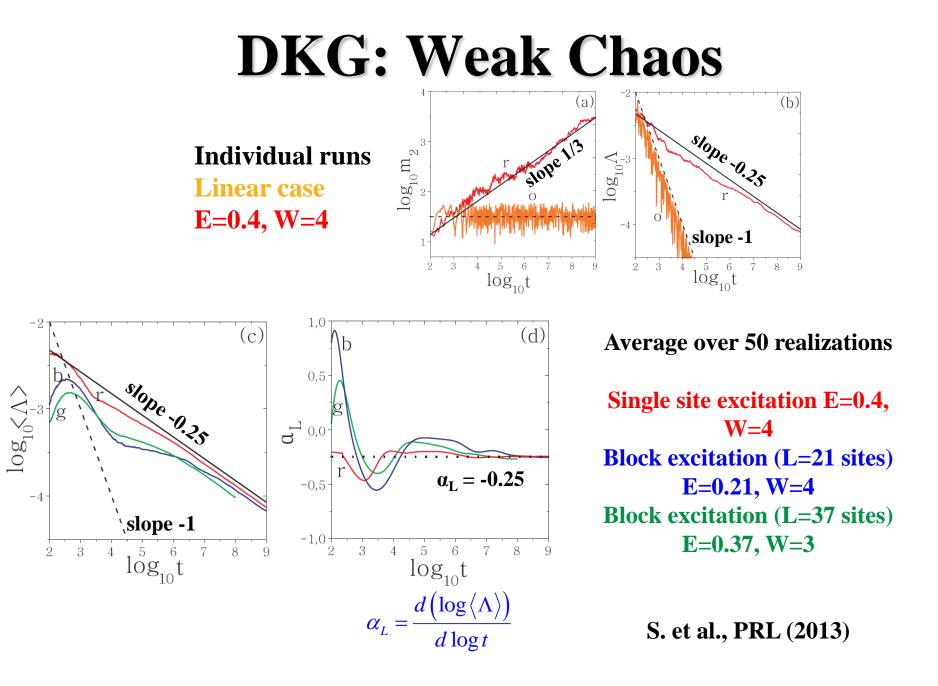
DKG: LEs for single site excitations (E=0.4)



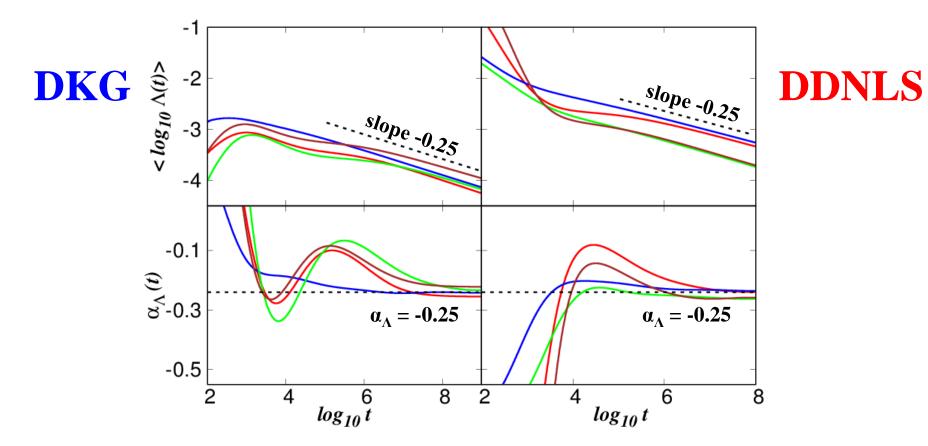
DKG: Weak Chaos (E=0.4)

t = 100000000.00





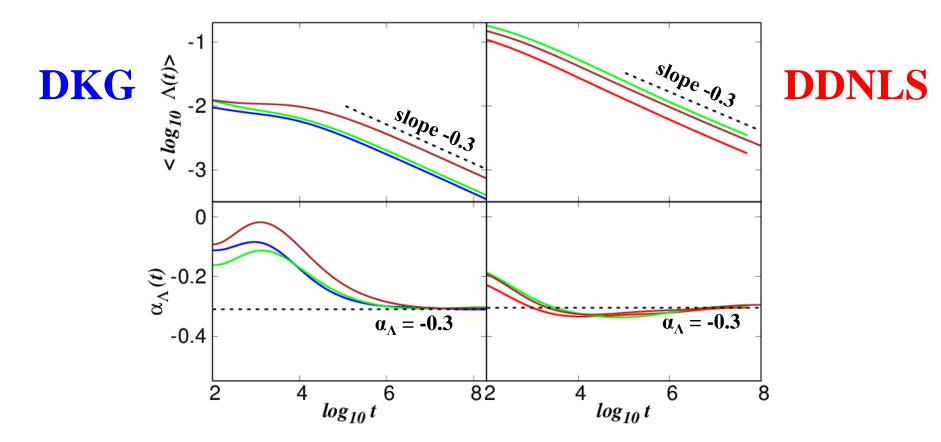
Weak Chaos: DKG and DDNLS



Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=37 sites) E=0.37, W=3 Single site excitation E=0.4, W=4 Block excitation (L=21 sites) E=0.21, W=4 Block excitation (L=13 sites) E=0.26, W=5 Block excitation (L=21 sites) β =0.04, W=4 Single site excitation β =1, W=4 Single site excitation β =0.6, W=3 Block excitation (L=21 sites) β =0.03, W=3

Strong Chaos: DKG and DDNLS

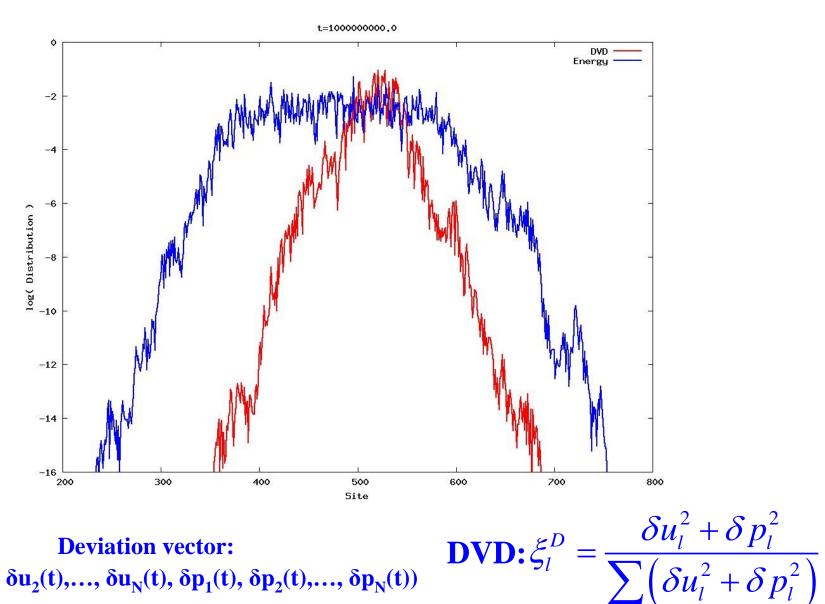


Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=83 sites) E=0.83, W=2 Block excitation (L=37 sites) E=0.37, W=3 Block excitation (L=83 sites) E=0.83, W=3

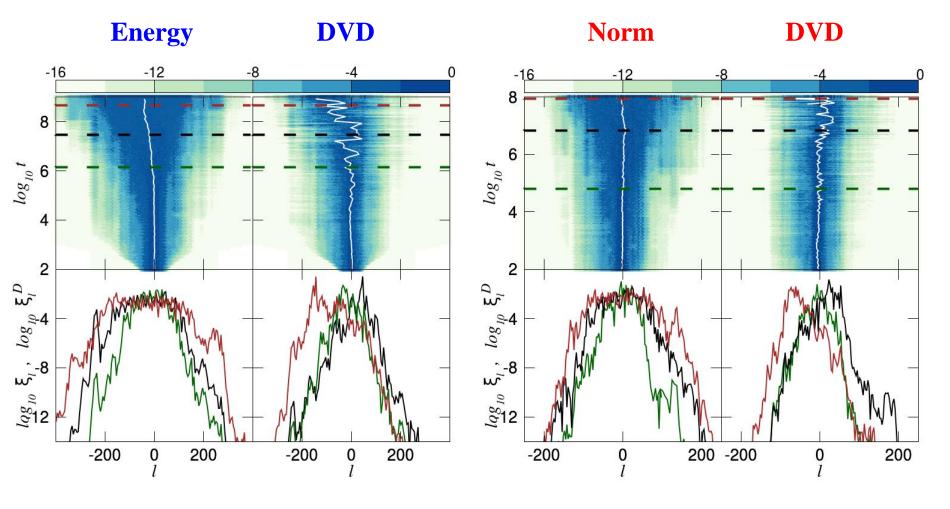
Block excitation (L=21 sites) β=0.62, W=3.5 Block excitation (L=21 sites) β=0.5, W=3 Block excitation (L=21 sites) β=0.72, W=3.5

Deviation Vector Distributions (DVDs)



Deviation vector: $v(t) = (\delta u_1(t), \delta u_2(t), ..., \delta u_N(t), \delta p_1(t), \delta p_2(t), ..., \delta p_N(t))$

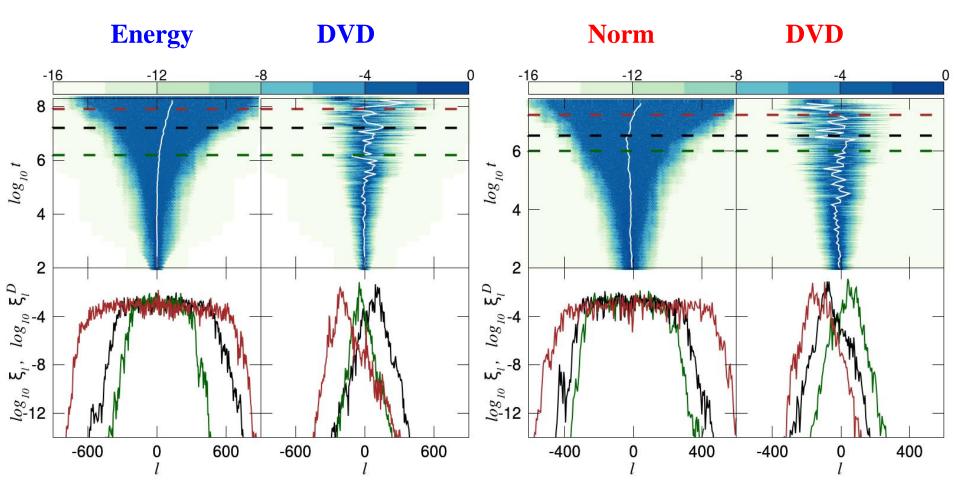
Weak Chaos: DKG and DDNLS



DKG: W=3, L=37, E=0.37

DDNLS: W=4, L=21, β=0.04

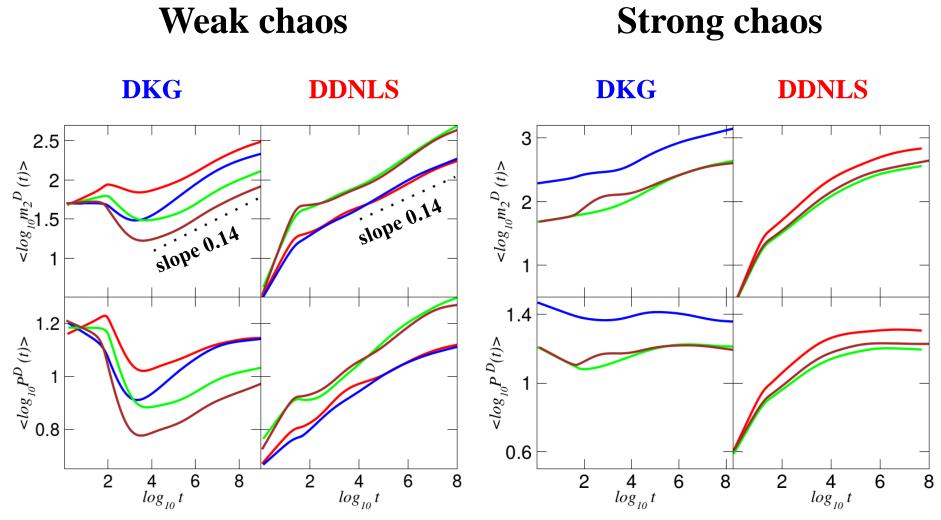
Strong Chaos: DKG and DDNLS



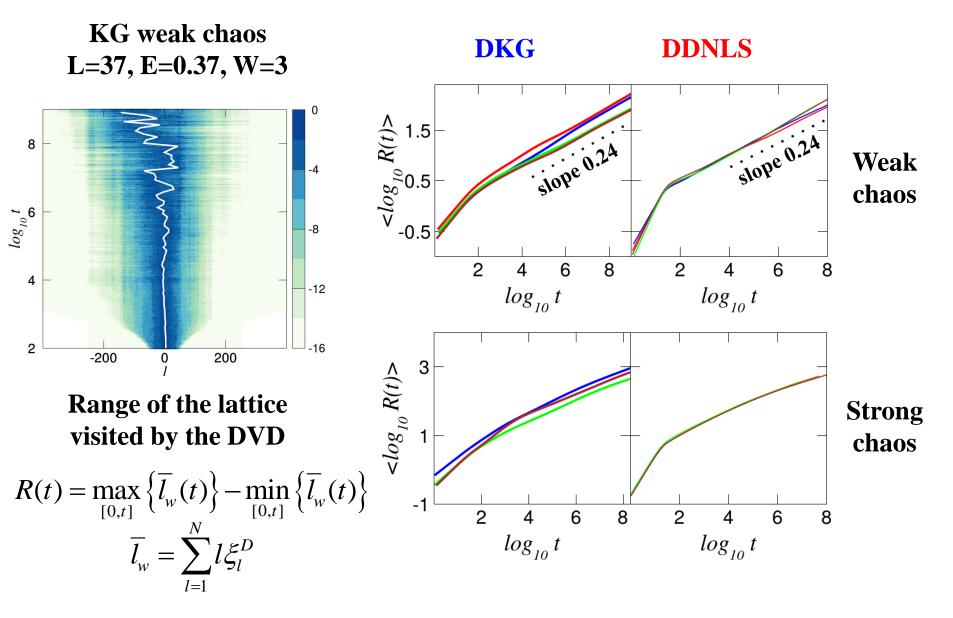
DKG: W=3, L=83, E=8.3

DDNLS: W=3.5, L=21, β=0.72

Characteristics of DVDs



Characteristics of DVDs



Summary

- Both the DKG and the DDNLS models show similar chaotic behaviors
- The mLCE and the DVDs show different behaviors for the weak and the strong chaos regimes.
- Lyapunov exponent computations show that:
 - ✓ Chaos not only exists, but also persists.
 - ✓ Slowing down of chaos does not cross over to regular dynamics.
 - ✓ Weak chaos: mLCE ~ t^{-0.25}
 - ✓ Strong chaos: mLCE ~ t^{-0.3}
- The behavior of DVDs can provide information about the chaoticity of a dynamical system.
 - ✓ Chaotic hot spots meander through the system, supporting a homogeneity of chaos inside the wave packet.

B. Senyange, B. Many Manda & Ch. S.: Phys. Rev. E, 98, 052229 (2018) 'Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices'